
The Data Cube as a Typed Linear Algebra
Operator

DBPL 2017 — 16th Symp. on DB Prog. Lang.

Technische Universität München (TUM), 1st Sep 2017

J.N. Oliveira

INESC TEC & U.Minho

(H2020-732051: CloudDBAppliance)

H.D. Macedo

SW Eng Group @ U.Aharus

Motivation Linear algebra Cube Properties References

Motivation

“Only by taking infinitesimally small units for observation
(the differential of history, that is, the individual
tendencies of men) and attaining to the art of
integrating them (that is, finding the sum of these
infinitesimals) can we hope to arrive at the laws of
history.”

Leo Tolstoy, “War and Peace”
- Book XI, Chap.II (1869)

150 years later, this is what we are trying to attain through
data-mining.

But — how fit are our maths for the task?

Have we attained the “art of integration”?

Motivation Linear algebra Cube Properties References

Motivation

Since the early days of psychometrics in the social sciences
(1970s), linear algebra (LA) has been central to data analysis
(e.g. tensor decompositions etc)

We follow this trend but in a typed way, merging LA with
polymorphic type systems, over a categorial basis.

We address a concrete example: that of studying the maths behind
a well-known device in data analysis, the data cube construction.

We will define this construction as a polymorphic LA operator.

Typed linear algebra is proposed as a rich setting for such an “art
of integration” to be achieved.

Motivation Linear algebra Cube Properties References

Running example

Raw data:

t =

Model Year Color Sale
1 Chevy 1990 Red 5
2 Chevy 1990 Blue 87
3 Ford 1990 Green 64
4 Ford 1990 Blue 99
5 Ford 1991 Red 8
6 Ford 1991 Blue 7

Columns — attributes — the observables
Rows — records (n-many) — the infinitesimals

Column-orientation — each column (attribute) A represented by
a function tA : n→ A such that a = tA (i) means “a is the value of
attribute A in record nr i”.

Motivation Linear algebra Cube Properties References

Records are tuples

Can records be rebuilt from such attribute projection functions?

Yes — by tupling them.

Tupling: Given functions f : A→ B and g : A→ C ,
their tupling is the function f O g such that

(f O g) a = (f a, g a)

For instance,

(tColor O tModel) 2 = (Blue,Chevy),
(tYear O (tColor O tModel)) 3 = (1990, (Green,Ford))

and so on.

Motivation Linear algebra Cube Properties References

Inverting tuples

For the column-oriented model to work one will need to express
joins, and these call for “inverse” functions, e.g.

(tModel
O tYear)◦ (Ford , 1990) = {3, 4}

meaning that tuples nr 3 and nr 4 have the same model (Ford)
and year (1990).

However, the type f ◦ : A→ P n is rather annoying, as it involves
sets of tuple indices — these will add an extra layer of complexity.

Fortunately, there is a simpler way — typed linear algebra, also
known as linear algebra of programming (LAoP).

Motivation Linear algebra Cube Properties References

The LAoP approach

Represent functions by Boolean matrices.

Given (finite) types A and B, any function

f : A→ B

can be represented by a matrix Jf K with A-many columns and
B-many rows such that, for any b ∈ B and a ∈ A, matrix cell

b Jf K a =

{
1⇐ b = f a
0 otherwise

NB: Following the infix notation usually adopted for relations (which are
Boolean matrices) — for instance y 6 x — we write y M x to denote
the contents of the cell in matrix M addressed by row y and column x .

Motivation Linear algebra Cube Properties References

The LAoP approach

One projection function (matrix) per dimension attribute:

tModel 1 2 3 4 5 6
Chevy 1 1 0 0 0 0

Ford 0 0 1 1 1 1

tYear 1 2 3 4 5 6
1990 1 1 1 1 0 0
1991 0 0 0 0 1 1

tColor 1 2 3 4 5 6
Blue 0 1 0 1 0 1

Green 0 0 1 0 0 0
Red 1 0 0 0 1 0

Model Year Color Sale
1 Chevy 1990 Red 5
2 Chevy 1990 Blue 87
3 Ford 1990 Green 64
4 Ford 1990 Blue 99
5 Ford 1991 Red 8
6 Ford 1991 Blue 7

NB: we tend to abbreviate Jf K by f when the context is clear.

Motivation Linear algebra Cube Properties References

The LAoP approach

Note how the inverse of a function is also represented by a Boolean
matrix, e.g.

t◦Model Chevy Ford
1 1 0
2 1 0
3 0 1
4 0 1
5 0 1
6 0 1

versus
tModel 1 2 3 4 5 6
Chevy 1 1 0 0 0 0

Ford 0 0 1 1 1 1

— no need for powersets.

Clearly,

j t◦Model a = a tModel j

Given a matrix M, M◦ is known as the transposition of M.

Motivation Linear algebra Cube Properties References

The LAoP approach

We type matrices in the same way as functions: M : A→ B means
a matrix M with A-many columns and B-many rows.

Matrices are arrows: A
M // B denotes a matrix from A (source)

to B (target), where A,B are (finite) types.

Writing B A
Moo means the same as A

M // B .

Composition — aka matrix multiplication:

B A
Moo C

Noo

M·N

hh

b(M · N)c = 〈
∑

a :: (b M a)× (a N c)〉

Motivation Linear algebra Cube Properties References

The LAoP approach

Function composition implemented by matrix multiplication,
Jf · gK = Jf K · JgK

Identity — the identity matrix id corresponds to the identity
function and is such that

M · id = M = id ·M (1)

Function tupling corresponds to the so-called Khatri-Rao
product M O N defined index-wise by

(b, c) (M O N) a = (b M a)× (c N a) (2)

Khatri-Rao is a “column-wise” version of the well-known
Kronecker product M ⊗ N:

(y , x) (M ⊗ N) (b, a) = (y M b)× (x N a) (3)

Motivation Linear algebra Cube Properties References

Typing data

The raw data given above is
represented in the LAoP by the
expression

v = (tYear O (tColor O tModel)) · (tSale)◦ (4)

of type

v : 1→ (Year × (Color ×Model))

depicted aside.

v is a multi-dimensional column vector — a tensor. Datatype
1 = {all} is the so-called singleton type.

Motivation Linear algebra Cube Properties References

Dimensions and measures
Sale is a special kind of data — a
measure. Measures are encoded
as row vectors, e.g.

tSale 1 2 3 4 5 6
1 5 87 64 99 8 7

recall

Model Year Color Sale
1 Chevy 1990 Red 5
2 Chevy 1990 Blue 87
3 Ford 1990 Green 64
4 Ford 1990 Blue 99
5 Ford 1991 Red 8
6 Ford 1991 Blue 7

Model

Year #t
tColor //

tModel

OO

tYearoo

tSale

��

Color

1

Summary:
dimensions are
matrices, measures
are vectors.

Measures provide for integration in Tolstoy’s sense — aka consolidation

Motivation Linear algebra Cube Properties References

Totalisers

There is a unique function in type A→ 1, usually named

A
! // 1 . This corresponds to a row vector wholly filled with 1s.

Example: 2
! // 1 =

[
1 1

]
Given M : B → A, the expression ! ·M (where A

! // 1) is the
row vector (of type B → 1) that contains all column totals of M,[

1 1
]
·
[

50 40 85 115
50 10 85 75

]
=
[
100 50 170 190

]
Given type A, define its totalizer matrix A

τA // A + 1 by

τA : A→ A + 1

τA =

[
id

!

]
(5)

Thus τA ·M yields a copy of M on top of the corresponding totals.

Motivation Linear algebra Cube Properties References

Cubes

Data cubes can be obtained from products of totalizers.

Recall the Kronecker (tensor) product M ⊗ N of two matrices

A
M // B and C

N // D , which is of type A× C
M⊗N // B × D .

The matrix

A× B
τA⊗τB // (A + 1)× (B + 1)

provides for totalization on the two dimensions A and B.

Indeed, type (A + 1)× (B + 1) is isomorphic to
A× B + A + B + 1, whose four parcels represent the four
elements of the “dimension powerset of {A,B }”.

Motivation Linear algebra Cube Properties References

Cube = muti-dimensional totalisation

Recalling

v = (tYear O (tColor O tModel)) · (tSale)◦

build

c = (τYear ⊗ (τColor ⊗ τModel)) · v

This is the multidimensional vector
(tensor) representing the data cube for

• dimensions Year , Color , Model

• measure Sale

depicted aside.

Motivation Linear algebra Cube Properties References

Totalisers yield cubes

We reason:

c = (τYear ⊗ (τColor ⊗ τModel)) · v

= { v = (tYear O (tColor O tModel)) · (tSale)◦ }

(τYear ⊗ (τColor ⊗ τModel)) · (tYear O (tColor O tModel)) · (tSale)◦

= { property (M ⊗ N) · (P O Q) = (M · P) O (N · Q) }

((τYear · tYear) O ((τColor · tColor) O ((τModel · tModel)))) · (tSale)◦

= { define t ′A = τA · tA }

(t ′Year O (t ′Color O t ′Model)) · (tSale)◦

Note that t ′A =
[
tA
!

]
, since tA is a function.

Motivation Linear algebra Cube Properties References

Generalizing data cubes

In our approach a cube is not necessarily one such column vector.

The key to generic data cubes is (generalized) vectorization, a

kind of “matrix currying”: given A× B
M // C with

A× B-many columns and C -many rows, reshape M into its

vectorized version B
vecA M// A× C with B-many columns and

A× C -many rows.

Such matrices, M and vecA M, are isomorphic in the sense that
they contain the same information in different formats, as

c M (a, b) = (a, c) (vecA M) b (6)

holds for every a, b, c .

Motivation Linear algebra Cube Properties References

Generalizing data cubes

Vectorization thus has an inverse operation — unvectorization:

A× B → C

vecA
++

∼= B → A× C

unvecA

kk

That is, M can be retrieved back from vecA M by devectorizing it:

N = vecA M ⇔ unvecA N = M (7)

Vectorization has a rich algebra, e.g. a fusion-law

(vec M) · N = vec (M · (id ⊗ N)) (8)

and an absorption-law:

vec (M · N) = (id ⊗M) · vecN (9)

Motivation Linear algebra Cube Properties References

(De)vectorization

Devectorizing our starting tensor, across dimension Year :

Year × (Color ×Model) 1oo Color ×Model Yearoo

unvecYear



all

1990

Blue
Chevy 87

Ford 99

Green
Chevy 0

Ford 64

Red
Chevy 5

Ford 0

1991

Blue
Chevy 0

Ford 7

Green
Chevy 0

Ford 0

Red
Chevy 0

Ford 8



=

1990 1991

Blue
Chevy 87 0

Ford 99 7

Green
Chevy 0 0

Ford 64 0

Red
Chevy 5 0

Ford 0 8

There is room for further devectorizing the outcome, this time
across Color — next slide:

Motivation Linear algebra Cube Properties References

(De)vectorization

Further devectorization:

Color ×Model Yearoo Model Color × Yearoo

unvecColor



1990 1991

Blue
Chevy 87 0

Ford 99 7

Green
Chevy 0 0

Ford 64 0

Red
Chevy 5 0

Ford 0 8


=

Blue Green Red

1990 1991 1990 1991 1990 1991

Chevy 87 0 0 0 5 0

Ford 99 7 64 0 0 8

and so on.

Motivation Linear algebra Cube Properties References

Generic cubes

It turns out that cubes can be calculated for any such
two-dimensional versions of our original data tensor, for instance,

cube N : Model + 1 (Color + 1)× (Year + 1)oo

cube N = τModel · N · (τColor ⊗ τYear)◦

where N stands for the second matrix of the previous slide, yielding

Blue Green Red all
1990 1991 all 1990 1991 all 1990 1991 all 1990 1991 all

Chevy 87 0 87 0 0 0 5 0 5 92 0 92

Ford 99 7 106 64 0 64 0 8 8 163 15 178

all 186 7 193 64 0 64 5 8 13 255 15 270

See how the 36 entries of the original cube have been rearranged in
a 3*12 rectangular layout, as dictated by the dimension
cardinalities.

Motivation Linear algebra Cube Properties References

The cube (LA) operator

Definition (Cube)

Let M be a matrix of type

Πn
j=1Bj Πm

i=1Ai
Moo (10)

We define matrix cube M, the cube of M, as follows

cube M = (
n⊗

j=1

τBj
) ·M · (

m⊗
i=1

τAi
)◦ (11)

where
⊗

is finite Kronecker product.

So cube M has type Πn
j=1(Bj + 1) Πm

i=1(Ai + 1)oo .

�

Motivation Linear algebra Cube Properties References

Properties of data cubing

Linearity:

cube (M + N) = cube M + cube N (12)

Proof: Immediate by bilinearity of matrix composition:

M · (N + P) = M · N + M · P (13)

(N + P) ·M = N ·M + P ·M (14)

This can be taken advantage of not only in incremental data cube
construction but also in parallelizing data cube generation.

Motivation Linear algebra Cube Properties References

Properties of data cubing

Updatability: by Khatri-Rao product linearity,

(M + N) O P = M O P + N O P

P O (M + N) = P O M + P O N

the cube operator commutes with the usual CRUDE operations, namely
record updating. For instance, suppose record

Model Year Color Sale

5 Ford 1991 Red 8
cf

tModel 1 2 3 4 5 6
Chevy 1 1 0 0 0 0

Ford 0 0 1 1 1 1

is updated to

Model Year Color Sale

5 Chevy 1991 Red 8
cf

t′Model 1 2 3 4 5 6
Chevy 1 1 0 0 1 0

Ford 0 0 1 1 0 1

Motivation Linear algebra Cube Properties References

Properties of data cubing

One just has to compute the “delta” projection,

δModel = t ′Model − tModel =
1 2 3 4 5 6

Chevy 0 0 0 0 1 0
Ford 0 0 0 0 -1 0

then the “delta cube”,

d = (τYear ⊗ (τColor ⊗ τModel)) · v ′
where

v ′ = (tYear O (tColor O δModel)) · (tSale)◦

and finally add the “delta cube” to the original cube:

c ′ = c + d.

Motivation Linear algebra Cube Properties References

Properties of data cubing

Cube commutes with vectorization:

Let X Y × C
Moo and Y × X C

vec Moo be its
Y -vectorization. Then

vec (cube M) = cube (vec M) (15)

holds. �

Type diagrams:

Y × X

τY⊗τM

��

C
vecY Moo ∼= X

τX

��

Y × C
Moo

(Y + 1)× (X + 1) C + 1
cube (vecY M)oo

vecY+1 (cube M)
oo

τ◦C

OO

∼= X + 1 (Y + 1)× (C + 1)

(τY⊗τC)
◦

OO

cube Moo

(Proof in the paper.)

Motivation Linear algebra Cube Properties References

Properties of data cubing

The following theorem shows that changing the dimensions of a
data cube does not change its totals.

Theorem (Free theorem)

Let B A
Moo be cubed into B + 1 A + 1

cube Moo , and r : C → A
and s : D → B be arbitrary functions. Then

cube (s◦ ·M · r) = (s◦ ⊕ id) · (cube M) · (r ⊕ id) (16)

holds, where M ⊕ N =

[
M 0
0 N

]
is matrix direct sum.

�

The proof given in the paper resorts to the free theorem of
polymorphic operators popularized by Wadler (1989) under the
heading Theorems for free!.

Motivation Linear algebra Cube Properties References

Cube universality — slicing

Slicing is a specialized filter for a particular value in a dimension.

Suppose that from our starting cube

c : 1→ (Year + 1)× ((Color + 1)× (Model + 1))

one is only interested in the data concerning year 1991.

It suffices to regard data values as (categorial) points: given
p ∈ A, constant function p : 1→ A is said to be a point of A, for
instance

1991 : 1→ Year + 1

1991 =

0
1
0



Motivation Linear algebra Cube Properties References

Cube universality — slicing
Example:

1
c ��

(Y
ea

r
+
1)
×

((
C

ol
or

+
1

)
×

(M
o

d
el

+
1)

)

1991◦ ⊗ id ��
1
×

((
C

ol
or

+
1)
×

(M
o

d
el

+
1

))
=



0
7
7
0
0
0
0
8
8
0

15
15



Motivation Linear algebra Cube Properties References

Cube universality — rolling-up

Gray et al. (1997) say that going up the levels [of aggregated data]
is called rolling-up. In this sense, a roll-up operation over
dimensions A, B and C could be the following form of (increasing)
summarization:

A× (B × C)

A× B

A

1

How does this work over a data cube? We take the simpler case of
two dimensions A, B as example.

Motivation Linear algebra Cube Properties References

Cube universality — rolling-up

The dimension powerset for A, B is captured by the corresponding
matrix injections onto the cube target type (A + 1)× (B + 1):

(A + 1)× (B + 1)

A× B

θ
66

A

α

OO

B
β

gg

1

ω

ii

where

θ = i1 ⊗ i1
α = i1 O i2 · !
β = i1 · ! O i2
ω = i2 O i2

NB: the injections i1 and i2
are such that [i1|i2] = id ,
where [M|N] denotes the
horizonal gluing of two
matrices.

Motivation Linear algebra Cube Properties References

Cube universality — rolling-up

One can build compound injections, for instance

ρ : (A + 1)× (B + 1)← A× B + (A + 1)

ρ = [θ| [α|ω]]

Then, for M : C → A× B:

ρ◦ · (cube M) =

[
M[

fst·M
!·M

]] · τ◦C
extracts from cube M the corresponding roll-up.

The next slides give a concrete example.

Motivation Linear algebra Cube Properties References

Cube universality — rolling-up

Let M be the (generalized) data cube

1990 1991 all

Blue

Chevy 87 0 87

Ford 99 7 106

all 186 7 193

Green

Chevy 0 0 0

Ford 64 0 64

all 64 0 64

Red

Chevy 5 0 5

Ford 0 8 8

all 5 8 13

all
Chevy 92 0 92

Ford 163 15 178

all 255 15 270

Motivation Linear algebra Cube Properties References

Cube universality — rolling-up

Building the injection matrix ρ = [θ| [α|ω]] for types
Color ×Model + Color + 1→ (Color + 1)× (Model + 1) we get
the following matrix (already transposed):

Blue Green Red all
Chevy Ford all Chevy Ford all Chevy Ford all Chevy Ford all

Blue
Chevy 1 0 0 0 0 0 0 0 0 0 0 0

Ford 0 1 0 0 0 0 0 0 0 0 0 0

Green
Chevy 0 0 0 1 0 0 0 0 0 0 0 0

Ford 0 0 0 0 1 0 0 0 0 0 0 0

Red
Chevy 0 0 0 0 0 0 1 0 0 0 0 0

Ford 0 0 0 0 0 0 0 1 0 0 0 0

Blue 0 0 1 0 0 0 0 0 0 0 0 0

Green 0 0 0 0 0 1 0 0 0 0 0 0

Red 0 0 0 0 0 0 0 0 1 0 0 0

all 0 0 0 0 0 0 0 0 0 0 0 1

Motivation Linear algebra Cube Properties References

Cube universality — rolling-up

Then

ρ◦ · cube M =

1990 1991 all

Blue
Chevy 87 0 87

Ford 99 7 106

Green
Chevy 0 0 0

Ford 64 0 64

Red
Chevy 5 0 5

Ford 0 8 8
Blue 186 7 193

Green 64 0 64
Red 5 8 13
all 255 15 270

Note how a roll-up is a particular “subset” of a cube.

Matrix ρ◦ performs the (quantitative) selection of such a subset.

Motivation Linear algebra Cube Properties References

Summary

• Abadir and Magnus (2005) stress on the need for a
standardized notation for linear algebra in the field of
econometrics and statistics.

• Since (Macedo and Oliveira, 2013) the authors have invested
in typing linear algebra in a way that makes it closer to
modern typed languages.

• This talk has shown such a typed approach at work with an
example — defining and proving properties of the data cube
operator.

• This extends previous efforts on applying LA to OLAP
(Macedo and Oliveira, 2015)

• Our main aim is to formalize previous work in the field — e.g.
by Datta and Thomas (1999) and by Pedersen and Jensen
(2001) — in an unified way.

Motivation Linear algebra Cube Properties References

Future work

• We wish to exploit the parallelism inherent in linear algebra
(LA) processing to implement data cubing in an efficient,
parallel way.

• The properties of cube can be used to optimize LA scripts
involving data cubes.

• Preliminary results (Oliveira, 2016; Pontes et al., 2017) show
LA scripts encoding data analysis operations performing
better on HPC architectures than standard competitors.

Motivation Linear algebra Cube Properties References

Preliminary results (TPC-H on Search6)

(Filipe
Oliveira,
Sérgio
Caldas,
MSc
project on
HPC)

Motivation Linear algebra Cube Properties References

References

Motivation Linear algebra Cube Properties References

K.M. Abadir and J.R. Magnus. Matrix algebra. Econometric
exercises 1. C.U.P., 2005.

A. Datta and H. Thomas. The cube data model: a conceptual
model and algebra for on-line analytical processing in data
warehouses. Decis. Support Syst., 27(3):289–301, 1999. ISSN
0167-9236.

Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman,
Don Reichart, Murali Venkatrao, Frank Pellow, and Hamid
Pirahesh. Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-totals. J. Data Mining
and Knowledge Discovery, 1(1):29–53, 1997. URL
citeseer.nj.nec.com/article/gray95data.html.

H.D. Macedo and J.N. Oliveira. Typing linear algebra: A
biproduct-oriented approach. SCP, 78(11):2160–2191, 2013.

H.D. Macedo and J.N. Oliveira. A linear algebra approach to
OLAP. FAoC, 27(2):283–307, 2015.

J.N. Oliveira. Towards a linear algebra semantics for query
languages, June 2016. Presented at IFIP WG 2.1 #74 Meeting,

citeseer.nj.nec.com/article/gray95data.html
http://foswiki.cs.uu.nl/foswiki/IFIP21/GlasgowScotland

Motivation Linear algebra Cube Properties References

U. Strathclyde, Glasgow, 13-17 June (slides available from the
WG’s website.).

T.B. Pedersen and C.S. Jensen. Multidimensional database
technology. Computer, 34:40–46, December 2001. ISSN
0018-9162. URL http://dx.doi.org/10.1109/2.970558.

R. Pontes, M. Matos, J.N. Oliveira, and J.O. Pereira.
Implementing a linear algebra approach to data processing. In
GTTSE 2015, volume 10223 of LNCS, pages 215–222.
Springer-Verlag, 2017.

P.L. Wadler. Theorems for free! In 4th International Symposium
on Functional Programming Languages and Computer
Architecture, pages 347–359, London, Sep. 1989. ACM.

http://dx.doi.org/10.1109/2.970558

	Motivation
	Linear algebra
	Cube
	Properties

