Property-based Testing of SPARQL queries

Jesús M. Almendros-Jiménez Antonio Becerra-Terón University of Almería, SPAIN

- SPARQL program bugs: debugging and testing
- Type Checking
 - Wrongly typed (empty answers
- Testing
 - Disagreement between expected behavior and answers (

Type Checking

SELECT ?Person ?Paper ?University

WHERE

?Person

?Person

?Person

?Paper

?Paper

FILTER (

Query:

Universities of Invited Talks of 2-authors papers

Type Checking

SELECT ?Person ?Paper ?University

WHERE

?Person :attends :DBPL.

?Person :affiliation

Wrong typing:

has not

type: University

Wrong typing: !University has not type

:Person

FILTER (?na >= 2) }

SELECT ?Person ?Paper ?University

WHERE

?Person :attends :DBPL.

?Person :affiliation ?University .

?Paper rfd:type :Invited_talk .

?Paper:numberofAuthors?na.

FILTER (?na >= 2) }

Missing Triple!

Unexpected behavior! Wrong answers!!

SELECT ?Person ?Student ?University

WHERE

?Person :author :Paper .

?Student:author Paper.

?Paper rfd:type :Student_Paper .

FILTER (?age <= 30) }

Wrong Triple!

?Person :age ?age

Unexpected behavior! Wrong answers!!

```
SELECT ?Person ?Paper ?University
```

```
?Person :attends :DBPL .
?Person :affiliation ?University .
?Paper rfd:type :Invited_talk
?Paper :numberofAuthors ?na
FILTER (?na >= 2)
}
```

Property:
is ?Person the author of
?Paper ?

SELECT ?Person ?Student ?University

WHERE

?Person :author :Paper .

?Student:author Paper.

?Paper rfd:type :Student_paper .

?Person :age ?age.

FILTER (?age <= 30) }

Property:
is ?Student
younger than 30?

Type System for SPARQL

(OP1) s p o ⊢	o:D, s:E	if $p \in op(O) \cup op(RDF) \cup op(RDFS) \cup op(OWL)$ and o is a variable
		% for each $D \in RangesOP(p)$, for each $E \in DomainsOP(p)$
(OP2) s p o ⊢	fail	if $p \in op(O) \cup op(RDF) \cup op(RDFS) \cup op(OWL)$ and o is a literal
(DP1) s p o ⊢	o:D, s:E	if $p \in dp(O) \cup dp(RDF) \cup dp(RDFS) \cup dp(OWL)$ and o is a variable
		% for each $D \in RangesDP(p)$, for each $E \in DomainsDP(p)$
(DP2) s p o ⊢	s:D	if $p \in dp(O) \cup dp(RDF) \cup dp(RDFS) \cup dp(OWL)$, o is a literal
		and $datatype(o) \in RangesDP(p)$
		% for each $D \in DomainsDP(p)$
(DP3) s p o ⊢	fail	if o is a literal and $p \in dp(O) \cup dp(RDF) \cup dp(RDFS) \cup dp(OWL)$
	•	and $datatype(o) \notin RangesDP(p)$
(VAR) s p o ⊦	s,p: rdfs:Resource	if p is a variable
(VOC) s p o ⊢	fail	if ns(t) is ns(O), rdf, rdfs or owl
	•	and name(t) \notin voc(O) \cup voc(RDF) \cup voc(RDFS) \cup voc(OWL), t is s , p or o
$ (FIL1) l \diamond r \vdash$	l:datatype(r)	if <i>r</i> is a literal
(FIL2) <i>l</i> ⋄ <i>r</i> ⊢	l,r: rdfs:Literal	if <i>l</i> and <i>r</i> are variables
(FIL3) <i>l</i> ⋄ <i>r</i> ⊢	fail	if l and r are literals and datatype(l) \neq datatype (r)

Testing of SPARQL

Ontology to XML Schema Mapping Test Case Generation

```
<xs:element name="rdf:RDF">
<xs:element name="sn:Event" minOccurs="1" maxOccurs="unbounded">
<xs:sequence>
<xs:element name="sn:date" type="dateType" minOccurs="1" maxOccurs="1">
<xs:element name="sn:added_by" minOccurs="1" maxOccurs="1">
</xs:sequence>
</xs:element>
<xs:element name="sn:User" minOccurs="2" maxOccurs="unbounded">
<xs:sequence>
<xs:sequence>
<xs:element name="sn:age" type="ageType" minOccurs="1" maxOccurs="1">
<xs:element name="sn:age" type="ageType" minOccurs="1" maxOccurs="1">
</xs:element name="sn:friend_of" minOccurs="1" maxOccurs="unbounded">
</xs:sequence>
</xs:element>
</xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element></xs:element</x></xs:element</x></xs:element</x>
```

```
<xs:simpleType name="EventType">
<xs:restriction base="xs:string">
<xs:enumeration value="#tennis"/>
</xe-restriction>
</xs:simpleTvpe>
<xs:simpleType name="UserType">
<xs:restriction base="xs:string">
<xs:enumeration value="#luis"/>
<xs:enumeration value="#jesus"/>
</r>
</xs:simpleType>
<xs:simpleType name="dateType">
<xs:restriction base="xs:dateTime">
<xs:enumeration value="2016-01-01T00:00:00Z"/>
<xs:enumeration value="2018-01-01T00:00:00Z"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ageType">
<xs:restriction base="xs:integer">
<xs:enumeration value="30"/>
<xs:enumeration value="50"/>
</xs:restriction>
</xs:simpleType>
```

- Type Checking using an Ontology Reasoner (Hermit) for
- Testing using an Ontology Reasoner (Hermit) for test cases consistence
- Testing using

Type Checking Tool results:

```
Test cases cannot be generated:
DisjointClasses(#Activity #User)
ClassAssertion(#Activity #event)
ClassAssertion(#User #event)
```

Randomly generated test cases

Problem => Inconsistent Test Cases

Example:

:coauthor is irreflexive

Unable to test the property. It was **not** possible to find consistent tests.

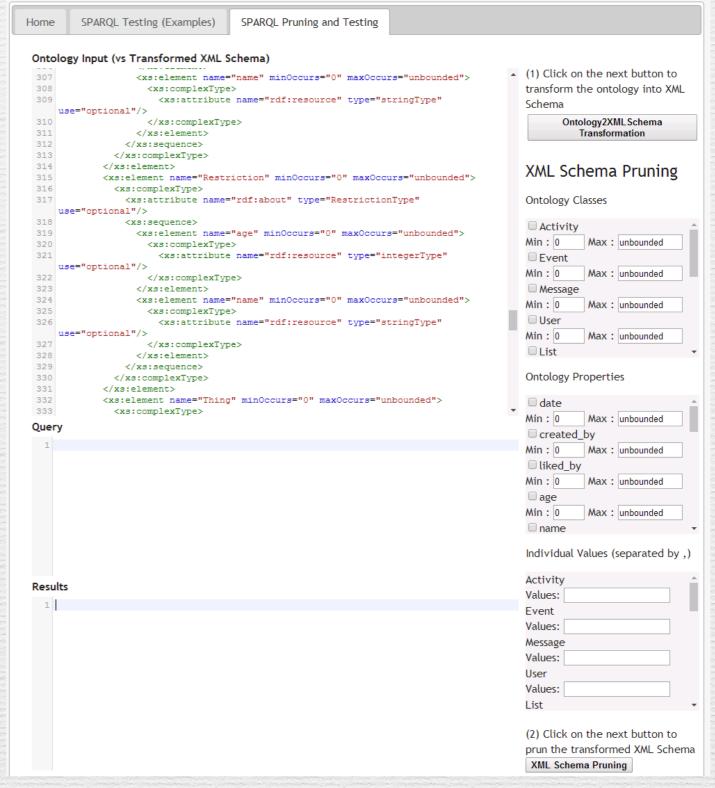
Testing success

Ok: passed 256 tests.

Testing fail

```
Output Property Falsifiable after 18 tests.
 Counterexample:
<rdf:RDF>
  <sn:User rdf:about="#luis">
    <sn:age rdf:datatype="#integer">50</sn:age>
    <sn:name>luis</sn:name>
  </sn:User>
</rdf:RDF>
```

Type Checking and Testing Tool


http://minerva.ual.es:8080/SPARQL

```
Ontology Input (vs Transformed XML Schema)
                                                                                                  Choose an ontology example
     <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
                                                                                                  Example 1

    clear
      <xs:element name="rdf:RDF">
         <xs:complexType>
           <xs:sequence>
             <xs:element name="socialnetwork:Event" minOccurs="1"</pre>
    maxOccurs="unbounded">
               <xs:complexType>
                                                                                                 Steps
                 <xs:attribute name="rdf:about" type="EventType" use="required"/>
                                                                                                 Ontology Name socialnetwork
                   <xs:element name="socialnetwork:created by" minOccurs="1"</pre>
    maxOccurs="unbounded">
                                                                                                  TEST
                     <xs:complexType>
 11
                        <xs:attribute name="rdf:resource" type="UserType"</pre>
     use="required"/>
                      </xs:complexType>
 13
                    </xs:element>
 14
                 </xs:sequence>
               </xs:complexType>
 16
             </xs:element>
 17
             <xs:element name="socialnetwork:User" minOccurs="1" maxOccurs="unbounded">
 18
               <xs:complexType>
 19
                 <xs:attribute name="rdf:about" type="UserType" use="required"/>
 20
                   <xs:element name="socialnetwork:likes" minOccurs="1"</pre>
 21
     maxOccurs="unbounded">
                      <xs:complexType>
 23
                        <xs:attribute name="rdf:resource" type="EventType"</pre>
     use="required"/>
 24
                      </xs:complexType>
 25
                   </xs:element>
                    <xs:element name="socialnetwork:invited to" minOccurs="1"</pre>
    maxOccurs="unbounded">
Query
  1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
  2 PREFIX rdf: <a href="http://www.w3.org/1999/02/22-rdf-syntax-ns#">http://www.w3.org/1999/02/22-rdf-syntax-ns#</a>
  3 PREFIX socialnetwork:
     <http://www.semanticweb.org/ontologies/2011/7/socialnetwork.owl#>
  4 SELECT ?event ?user2
     ?event socialnetwork:created by ?user1 .
     ?event socialnetwork:likes ?user2 .
     ?user2 socialnetwork:invited to ?event
```

Type Checking and Testing Tool

Pruning and Customization of Test Cases

Benchmarks

Query	Test Cases	Steps	Answer	Time
Example 1	_	-	Wrongly Typed	1,655 ms
Example 2	0	0	Unable	2,975 ms
Example 2	0	1	Unable	15,973 ms
Example 3 (Mature(?user1))	512	0	Falsifiable	8,355 ms
Example 3 (Mature(?user1))	512	1	Falsifiable	9,378 ms
Example 3 (This_Year(?event))	512	0	Passed	9,039 ms
Example 3 (This_Year(?event))	10,752	1	Passed	90,101 ms
Example 4	0	0	Unable	1,643 ms
Example 4	0	1	Unable	2,330 ms
Example 5	18	0	Falsifiable	2,385 ms
Example 5	18	1	Falsifiable	2,616 ms
Example 6	32	0	Falsifiable	2,288 ms
Example 6	32	1	Falsifiable	3,439 ms

Table 1: Benchmarks of the Testing Tool: Iteration Steps

Query	Item	MinOccurs	Time	Query	Item	Minoccurs	Time
Example 1	Event	1		Example 5	User	1	
	User	1			Age	1	
	Created_by	1			Name	1	2,385 ms
	Likes	1		Example 5	User	2	
	Invited_to	1	1,655 ms		Age	1	
Example 1	Event	2			Name	1	11,843 ms
	User	2		Example 5	User	3	
	Created_by	1		_	Age	1	
	Likes	1			Name	1	191,480 ms
	Invited_to	1	1,451 ms	Example 6	Event	1	
Example 2	Message	2			User	1	
	Sent_by	1			Created_by	1	
	Replied_by	1	2,975 ms		Likes	1	
Example 2	Message	2			Attends_to	1	2,288 ms
-	Sent_by	1		Example 6	Event	2	
	Replied_by	2	6,610 ms		User	1	
Example 3	Event	1			Created_by	1	
-	User	2			Likes	1	
	Date	1			Attends_to	1	2,953 ms
	Added_by	1		Example 6	Event	1	
	Age	1			User	2	
	Friend_of	1	8,355 ms		Created_by	1	
Example 3	Event	2			Likes	1	
	User	2			Attends_to	1	2,502 ms
	Date	1		Example 6	Event	2	
	Added_by	1			User	2	
	Age	1			Created_by	1	
	Friend_of	2	154,509 ms		Likes	1	
Example 4	Event	1			Attends_to	2	113,732 ms
	Date	1	1,643 ms	Example 6	Event	2	
Example 4	Event	2			User	2	
	Date	1	1,944 ms		Created_by	1	
Example 4	Event	3			Likes	2	
	Date	1	5,038 ms		Attends_to	2	383,405 ms

Table 2: Benchmarks of the Testing Tool: MinOccurs

Conclusions and Future Work

- Testing tool based on Test Case Generation from XML Schema
- Detection of Buggy SPARQL Queries
- Extending the output property set
- White-Box Testing: Constraint Solving

Thanks for your Attention

Jesús M. Almendros-Jiménez Antonio Becerra-Terón University of Almería SPAIN